Genetic Variation in the Base Excision Repair Pathway, Environmental Risk Factors, and Colorectal Adenoma Risk

نویسندگان

  • Roman Corral
  • Juan Pablo Lewinger
  • Amit D. Joshi
  • A. Joan Levine
  • David J. Vandenberg
  • Robert W. Haile
  • Mariana C. Stern
چکیده

Cigarette smoking, high alcohol intake, and low dietary folate levels are risk factors for colorectal adenomas. Oxidative damage caused by these three factors can be repaired through the base excision repair pathway (BER). We hypothesized that genetic variation in BER might modify colorectal adenoma risk. In a sigmoidoscopy-based study, we examined associations between 182 haplotype tagging SNPs in 14 BER genes, and colorectal adenoma risk, and examined their potential role as modifiers of the effect cigarette smoking, alcohol intake, and dietary folate levels. Among all individuals, no statistically significant associations between BER SNPs and adenoma risk persisted after correction for multiple comparisons. However, among Asian-Pacific Islanders we observed two SNPs in FEN1 and one in NTHL1, and among African-Americans one SNP in APEX1 that were associated with colorectal adenoma risk. Significant associations were also observed between SNPs in the NEIL2 gene and rectal adenoma risk. Three SNPS modified the effect of smoking (MUTYH interaction p = 0.002; OGG1 interaction p = 0.013); FEN1 interaction p = 0.013)), one SNP in LIG3 modified the effect of alcohol consumption (interaction p = 0.024) and two SNPs in LIG3 modified the effect of dietary folate (interaction p = 0.001 and p = 0.08) on colorectal adenoma risk. These findings support a role for genetic variants in the BER pathway as potential modifiers of colorectal adenoma risk. Our findings strengthen the role of oxidative damage induced by key lifestyle and dietary risk factors in colorectal adenoma formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic variation in base excision repair genes and the prevalence of advanced colorectal adenoma.

Base excision repair (BER) corrects DNA damage caused by oxidative stress and low folate intake, which are putative risk factors for colorectal neoplasia. To examine the relationship between genetic variation in BER genes and colorectal adenoma risk, we conducted a case-control study of 767 cases of advanced colorectal adenoma and 773 controls from the baseline screening exam of the Prostate, L...

متن کامل

Nucleotide excision repair gene polymorphisms and risk of advanced colorectal adenoma: XPC polymorphisms modify smoking-related risk.

OBJECTIVES Nucleotide excision repair enzymes remove bulky damage caused by environmental agents, including carcinogenic polycyclic aromatic hydrocarbons found in cigarette smoke, a risk factor for colorectal adenoma. Among participants randomized to the screening arm of the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial, we studied the risk of advanced colorectal adenoma in rel...

متن کامل

Genetic variation in the nucleotide excision repair pathway and colorectal cancer risk.

Nucleotide excision repair (NER) enzymes are critical for the removal of bulky DNA adducts caused by environmental carcinogens, such as heterocyclic amines and polycyclic aromatic hydrocarbons, which are found in two putative risk factors for colorectal cancer, tobacco smoke and meat cooked at high temperature. To examine the association between common genetic variants in NER genes and the risk...

متن کامل

MutYH (MYH) and colorectal cancer.

MAP (MutYH-associated polyposis) is a recently described colorectal adenoma and carcinoma predisposition syndrome that is associated with biallelic-inherited mutations of the human MutY homologue gene, MutYH. MutYH is often also termed MYH. MAP tumours display a mutational signature of somatic guanine-to-thymine transversion mutations in the adenomatous polyposis coli and K-ras genes, reflectin...

متن کامل

Genetic polymorphism in ERCC5 and breast cancer risk

ERCC5 plays crucial role in excision repair DNA damage induced by UV in NER pathway. Single neuleotide polymorphism in ERCC5 were responsible for different cancers.Therefore, current study evaluated the relationship between ERCC5 (rs1047768 T>C) polymorphism and the risk of breast cancer in Pakistani population. The rs1047768 polymorphism was screened among 175 female...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013